Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.16.22270842

ABSTRACT

The lipid envelope of SARS-CoV2 is an essential component of the virus, however its molecular composition is unknown. Addressing this knowledge gap could support the design of anti-viral agents, and further understanding of viral interaction with extracellular host proteins, infectivity, pathogenicity, and innate immune system clearance. Lipidomics analysis of SARS-CoV2 particles generated from Vero or A549 cells revealed that the virus envelope comprised mainly of phospholipids (PL), primarily phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI), with very little cholesterol, sphingolipids or other lipids, indicating significant differences from host membranes. Unlike healthy cellular membranes, procoagulant aminoPL (aPL), specifically PE and phosphatidylserine (PS), were present on the external side at levels far exceeding those seen on activated platelets. As a result, purified virions directly promoted coagulation. To investigate whether these differences enabled the viral envelope to be selectively targeted at relevant sites in vivo, we tested whether non-toxic oral rinses containing lipid disrupting chemicals could reduce viral infectivity. Products containing PL-disrupting surfactant solutions (cetylpyridinium chloride (CPC) or ethyl lauroyl arginate) met EN14476 virucidal standards in vitro, however products containing essential oils, PVP-I, or Chlorhexidine did not, nor did rinses containing components that altered the critical micelle concentration of CPC. This result was recapitulated in vivo, where a 30-second oral rinse with CPC-mouthwash eliminated live virus in the oral cavity of COVID19 patients for at least 1hr, while PVP-Iodine and saline mouthwashes were ineffective. Thus, the SARS-CoV2 lipid envelope is distinct from the host plasma membrane which may enable design of selective anti-viral approaches, it exposes PE and PS which may influence thrombosis, pathogenicity, and inflammation, and can be selectively targeted in vivo by specific oral rinses.


Subject(s)
COVID-19 , Inflammation , Thrombosis
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.13.381079

ABSTRACT

The ability of widely-available mouthwashes to inactivate SARS-CoV-2 in vitro was tested using a protocol capable of detecting a 5-log10 reduction in infectivity, under conditions mimicking the naso/oropharynx. During a 30 second exposure, two rinses containing cetylpyridinium chloride and a third with ethanol/ethyl lauroyl arginate eliminated live virus to EN14476 standards (>4-log10 reduction), while others with ethanol/essential oils and povidone-iodine (PVP-I) eliminated virus by 2-3-log10. Chlorhexidine or ethanol alone had little or no ability to inactivate virus in this assay. Studies are warranted to determine whether these formulations can inactivate virus in the human oropharynx in vivo, and whether this might impact transmission.

SELECTION OF CITATIONS
SEARCH DETAIL